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Electron energy loss in multilayered slabs: 111. Anisotropic 
media 
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Physics Depanment. The Open University, Walton Hall, Milton Keynes MK7 6AA. UK 

Received 10 August 1994 

Abstract This work extends the nowretarded semiclassical dielecbic theory of electron enera 
loss to multilayers composed of anisompic media. A transfer matrix recurrence relation is used 
to obtain expressions for the potential. dispenion relation and energy-loss spectrum, valid for 
any finite number of anisotropic layers and my orientation of the anisotropy axes. Bath normal 
and parallel incidence “e considered in the nowretarded limit. These theoretical results are 
illustrated by apphcarion to graphite surfaces and graphitdiamond interfaces. 

1. Introduction 

The study of electron energy loss in anisotropic solids has a long history [l]. Energy loss 
measurements on graphite [2 ,  3, 41 and the CuO-based high-temperature superconductors 
[5, 61 have shown that the detailed structure of the loss spectrum depends on the relative 
orientation of the beam direction and the anisotropy axes. Various authors have addressed 
the task of extending dielectric theory to anisotropic media, but the algebra is cumbersome 
and theoretical analysis has been confined to bulk media in the non-retarded limit [l, 7 ,8 ,9 ] .  
The theory has therefore reached to the same stage of development as Hubbard’s work on 
isotropic loss spectra, before the work of Ritchie on normal incidence through slabs [ 101 or 
that of Howie on parallel incidence near interfaces [ I l l .  

In two recent papers (referred to here as papers I and U) we have developed the retarded 
dielectric theory of electron energy loss in isotmpic multilayered slabs. Paper I dealt with 
normal incidence 1121, while the paper II dealt with parallel incidence [13]. Starting from 
transfer matrix recurrence relations and using computer algebra as a guide, we obtained 
compact formulae for the Hertz vector, the dispersion relation and the energy-loss spectrum, 
valid for any number of isotropic layers. 

Our primary goal in this paper is to derive formulae, analogous to those of Ritchie 
and Howie, but valid for single anisotropic slabs and single interfaces between anisotropic 
media. It turns out that techniques developed in papers I and II for multilayered isotropic 
slabs can be carried over completely to the anisotropic non-retarded case. We will therefore 
develop formulae that are valid for any number of anisotropic layers, with the anisotropy 
axes in arbitrary orientations and the electron beam travelling either normal or parallel to 
the interfaces. Formulae for single slabs and interfaces will then emerge as special cases of 
these more general results. 

The geometry under consideration can be specified as follows. An n-layered stratified 
slab extends to infinity in the x-  and y-directions and from z = 0 to z = a. The slab and 
its surroundings define n + 2 separate regions. The internal regions of the slab are labelled 
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1, . . . , n, with the j th  region extending zj-1 and zj and having thickness ai. The two 
external regions are labelled 0 and n + 1 and extend from 2-1 = -cc to zo = 0 and from 
z,, = a  to zn+1 = +m. The electron beam travels either along the z-axis (normal incidence) 
or the x-axis (parallel incidence). 

The dielectric theory of electron energy loss requires us to calculate the electric field 
at the position of the incoming electron due to the polarization induced in the stratified 
slab. In the non-retarded limit, this involves solving Poisson's equation, subject to the usual 
boundary conditions at interfaces, surfaces and infinity. The effects of anisotropy are dealt 
with by writing Poisson's equation for the potential in the jth region in the form 

.I P R Bolton and M Cken 

where E ~ ( w )  is the symmetric local dielectric tensor of the j th region. Taking the Fourier 
transform of (1) with respect to x and y then gives 

where 

This paper solves (2) and the associated boundary conditions by using a transfer matrix 
recurrence relation to link the potentials in any two neighbouring regions. We then derive 
closed-form solutions for the potential and hence predict the energy-loss spectrum. Section 2 
carries out the calculations for normal incidence, while section 3 is concerned with parallel 
incidence. Section 4 illustrates some consequences of our theory by performing numerical 
calculations for a single graphit-vacuum surface, a graphite slab surrounded by a vacuum 
and a graphite layer on a diamond substrate. Finally, section 5 summarizes our results and 
provides an outlook to future work. So far as possible, we will adopt the notation of papers 
I and 11, including the use of square brackets to denote dispersion brackets (see LIZ]). It 
is only possible to give an outline of our methods here; readers interested in the algebraic 
details can find full proofs in [I41 and [15]. 

2. Normal incidence 

2.1. Transfer matrix recurrence relation 

Suppose that the beam travels in the z-direction, normal to the interfaces of the multilayered 
anisotropic slab. Then a particle in the beam of charge Q and speed U has the Fourier- 
transformed charge density 

In order to describe the solution of (2) for this charge density, it is convenient to introduce 
wavevector-like variables K ~ ,  4," and p j ,  defined by 

K j = a  ( 5 )  

q? 1 = U K ~  - itJ (6)  
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where all square roots are taken with positive real parts, U = f and 

W, = + ejv .  (8) 
The solution to (2) can then be expressed as 

where the coefficients A," depend on k,, k, and w. The boundary conditions at infinity 
require two of the coefficients to vanish, so there remain 2n + 2 undetermined coefficients 
which can be found from the boundary conditions at the n + 1 interfaces. As in paper I, we 
recast the boundary conditions in terms of a transfer matrix recurrence relation. In order to 
express this recurrence relation in the simplest possible form we rescale the coefficients as 
follows: 

(10) 
EO U a; = EgvA,"e(~-'o/")z,-I 

and then define the coeflicient vector for the jth layer 

with a; = -A; Q Q 

We introduce the source terms 

and define source vector for the jth layer 

We also introduce the variables 
ha. = €?K. f ~ 7 G i 3 ~ K j  

I t  I J 

and the exponential factors 

with fo = f.+l = 1 (13) f .  - eXiYi 

b? = ei*UjGj/" 

I -  

I with bl  = b;+l = 1. (14) 
The boundary conditions at the interface between jth and ( j  + 1)th regions then lead to the 
simple recurrence relation 

hT+,,j+iaj+l = - .#+Uaj + sj (15) : fib: 

where the transfer matrix is given by 

This recurrence relation has the same form as that obtained for normal incidence on isotropic 
multilayers (paper I, equation (10)). Differences lie beneath the surface, though, because 
the term h14, S,4, b," and f, defined above are more complicated than the corresponding 
quantities for the isotropic case. In spite of these differences, have been able to adapt the 
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arguments given in paper I, to obtain the following general formula for the coefficients of 
the potential in the j t h  region of an n-layered anisotropic slab: 

J P R Bolton and M Chen~ 

This is formally identical to our expression for the coefficients of the Hertz vector in the 
isotropic case (paper I, equation (16)). Moreover, the quantities [C,,], [XL0], [YL], Mnj, 
Nj-l.o and qi; in (17) all have similar definitions (in terms of k;, S; and f,) to the 
corresponding quantities of paper I. For ease of reference we restate these definitions here, 
but rely on paper I for more detailed descriptions. In brief, we define the monotonically 
ordered products: 

D , .  J I  - - e , ,  I.’+L h- ;+ I , ,  , Eji = hJ<l.jfj”Cj-l,; 

X?. J‘ =sa ]+I., . f ? C .  J J-l,l  Yi; = s:;+lcj,i+l 
with initial values determined by Ci,;+l = 1 and C;,;+z = 0. 

Square brackets are used to indicate dispersion brackets of these ordered products- 
i.e. the sum of all non-overlapping contractions (including the term with no contractions). 
Each contraction is defined by choosing two factors with ?C superscripts. reversing the 
signs of these superscripts and ignoring all the f2-factors between them. This means, for 
example, that 

[GI] = [hh$?h:1f?] = h&f:hi!lf? + h&f: .  

Finally, we introduce the vectors 

and take 

k=i 

However, we emphasize again that the similarity between these equations and those of paper 
I is incomplete; the anisotropy of the present problem is embedded in the definitions of S;, 
h;,, f, and by, given by equations ( I l ) ,  (IZ), (13) and (14). 

2.2. Dispersion relation and energy-loss probabilizy 

The dispersion relation can be found either directly from (15) or from (17). For an n-layered 
anisotropic slab, we obtain 

pGi= (18) 

which is directly analogous to equation (15) of paper I. 
In order to find the semiclassical energy-loss spectrum we adopt a familiar strategy. 

The energy lost by an electron as it moves from z = --CO to z = +CO is calculated from 
thc solution for the potential (equations (9), (IO) and (17)). The semiclassical energy- 
loss spectrum is then obtained by interpreting the energy loss in lerms of the exchange of 
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individual quanta. Proceeding as in paper I, but allowing for a more complicated dependence 
on k, and k,, the energy loss is written as 

and 

where xb.n represents the bulk contribution and Xbdy describes the modifications due to 
surfaces and interfaces. The algebraic task of reducing the answer to a manageable form 
is harder than in the isotropic case, requiring a new calculation with several extra stages of 
proof [14. 151. Nevertheless, we have been able to establish that 

and 

where zk j  = 1 - $ k j .  

As expected, the bulk contribution is a sum over layers, with the j th  layer contributing 
an amount equal to its thickness times the energy loss per unit length in an infinite anisotropic 
medium with dielectric tensor €?(U) (see [71). The boundary contribution can be interpreted 
as a sum of couplings between pairs of interfaces. Although more complicated than Xbulk, 

it is still remarkably simple, bearing in mind the complexity of the problem. 
Equations (21) and (22) are our main theoretical results for normal incidence on 

anisotropic multilayers. They provide a natural extension of our previous work on isotropic 
multilayers and it is easy to show that their isotropic limits are the same as the non-retarded 
limits of equations (IS) and (19) ) in paper I. It is also worth noting that our final results 
are unchanged by the transformation K, + -K~. for any 1 < j < n. This means that the 
choice of square root in (5) is immaterial within the slab. 

For a single anisotropic slab, the above equations simplify to 

which is a result that will be applied to graphite slabs in section 4. 

3. Parallel incidence 

This section derives energy loss formulae for an electron that travels parallel to the interfaces 
of an anisotropic slab. We suppose that the electron travels in the mth region, parallel to 
the x-axis, with y = 0 and z = zb. Primes are used to distinguish sub-regions on either 
side of the beam: m‘ lies between zm-l and Zb, while m” lies between Zb and zm. 



3410 

3.1. Transfer matrix recurrence relation 

A particle in the beam of charge Q and speed U has the Fourier-transformed charge density 

J P R Bolton and M Chen 

p(kx, ky , Z, w )  = 2nQ 6 ( W  - k x ~ )  S ( Z  - Zb) 
Away from the beam level. z = Zb. we write the Fourier-transformed potential in region j 
as 

$j(kx, ky I z w )  = 4j - kx U). 

Then equation (2) is solved by taking 

where the coefficients B,? are found by supplementing the usual boundary conditions at the 
n + 1 interfaces with two conditions at z = zb: 

and 

As in the calculation for normal incidence, the boundary conditions are expressed in terms 
of a transfer matrix recurrence relation. In order to write this recurrence relation in the 
simplest possible form we rescale the coefficients as follows: 

sa I = ~?eq;+-lji,  I with B; = B; /A, (27) 
and introduce the coefficient vector for the j t h  layer 

We also introduce the source vectort 

where 
s; = e&(Zb-Zm-l) with go" 

The b o u n d w  conditions at the interface between ( j  + I)th regions, 
supplemented with conditions equations (25) and (26), then yield the recurrence relation 
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This recurrence relation can be solved to find the coefficient vector in any given layer. We 
define 

V; = [cji] /g! + Q [oji] /g; ~ j 9  = [cji] g:+l+ Q [ ~ j i ]  

Then, using the boundary conditions at infinity to find the coefficients in external region 0, 
and applying the recurrence relation from region 0 to any region j ,  we obtain 

and 

In particular, in the beam region itself, 

and 

The Fourier-transformed potential in the beam region then follows from equations (24) 
and (27) and can be used to find the work done by the beam and hence the semiclassical 
energy-loss spectrum. 

3.2. Dispersion relation and energy-loss probabilig 

The dispersion relation, derived from equations (28), (29), (30), (31) or (32), takes the same 
form as for normal incidence ((18)). This is unlike our previous findings in paper II, where 
additional TE modes were found in parallel incidence which were not excited by normal 
incidence. These modes do not appear in the present calculation because we are working 
in the non-retarded limit. 

To predict the energy-loss spectrum we calculate the work done on the incoming electron 
by the electric field induced in its polarized surroundings. The work done on the beam per 
unit path length can be expressed as 

d3P m 

= Jl(md(hm) ho lmdky d@o)dk,dx 
where 

(33) 

and 
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Using our solutions for the coefficient vector in the beam region (either equation (31) or 
equation (32)) we finally obtain 

J P R Bolton and M Chen 

Equation (36) is our main theoretical result for parallel incidence in or new anisotropic 
multilayers. It extends our previous work on isotropic multilayers and, in the isotropic 
limit, becomes identical to equation (21) of paper II. 

Our initial purpose in carrying out these calculations was to obtain formulae for single 
anisotropic interfaces and slabs. With this aim in mind, we now consider some special 
cases, beginning with that of a bulk medium, for which the number of interfaces (n + 1) is 
equal to zero. Then, substituting n = - 1  and m = 0 in (36) gives 

which is consistent with the results of 191 for energy loss in a bulk anisotropic medium. 

region 0, we obtain 
Next, we takc n = 0, corresponding to single interface at z = 0. With the beam in 

and with the beam in region I ,  we obtain 

As expected. equations (38) and (39) transform into one another if we make the replacements 
o tt I and zb ft -Zb. AISO, at the interface itself, xio) = xp’. 

Finally, consider the case of a single slab. On substituting n = 1 and m = 1 in (36), 
we obtain the energy-loss function for an internal beam: 

while substituting n = 1 and either m = 0 or m = 2 gives the expressions for an external 
beam: 

Equations (41) and (42) transform into one another if we make the replacements 0 U 2 
and Zb tt a, - zb. Also, (40) agrees with (41) when Zb = 0 and it agrees with (42) when 
zb = al. In the next section, these equations will be applied to graphite slabs surrounded 
by vacuum and diamond. 
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4. Applications of the scattering formulae 

This section applies the theoretical formulae derived above to energy-loss spectra of graphite, 
a typical uniaxial material. As this is the first analysis that indudes surface and interface 
terms for anisotropic materials, we concentrate on the simplest geometries-a single slab, a 
single interface and a surface coating of graphite on diamond. We consider three different 
orientations, with the anisoh-opy axis (the c-axis) aligned along the x - ,  y -  and z-axes. For 
brevity, these will be referred to as the 2-,  5- and ?-orientations. In all the graphs that 
follow, a solid line will be used for the ?-orientation, a dashed line for the 5-orientation 
and a dotted line for the %orientation. The dielectric tensors for these orientations are 

.=(:: €I 0 0  0 )  ..=(" €1' 0 0  0 )  .=(2 €1 0 0  0 )  

1 

0 0 €I 0 0 €1 0 0 d 

where € 1 1  is the dielectric function when the electric field is parallel to the c-axis and 
is the dielectric function when the electric field is perpendicular to the c-axis. Numerical 
values of these dielectric functions are taken from the Handbook of Optical Constants of 
Solids I1 by Palik [ 161. 

0.012 

4 I 

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 

electron energy-loss (ev) 
Figure 1. The scattering probability per unit energy range I (hw) for normal incidence on a 
single. graphite slab of thickness 100 A. The solid line corresponds Ihe 2-orientation and the 
dotted l i e  IO the equivalent 1- and $-orientations. 

The intensity of an energy-resolved STEM image is proportional to the scattering 
probability per unit energy range, I(hw),  which is obtained by integrating equations (20) or 
(34) over wavevectors. To avoid the logarithmic divergence that always accompanies bulk 
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(a) 0.0071 
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2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 

electron energy-loss (ev) 

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 

electron energy-toss (ev) 
Figure 2. Contributions to the energy-loss spectra of hgure I: (a) bulk contributions, (b) surface 
conlributions. 
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losses it is necessary to introduce an upper wavenumber cut-off, k,. For normal incidence 
we take 

and for parallel incidence 

dI(hw) kc d 3 P  - = 1, dk 
d(hu)dk,dx' dx (44) 

In practice, k,  is often determined by the size of the objective aperture which restricts 
the scattering angle, so it is appropriate to impose the cut-off isotropically as in (43); in any 
case, I (%@) is fairly insensitive to the cut-off and (43) provides a simple and convenient 
choice. In the following examples the beam energy has been set at 100 keV and the cut-off 
wavevector has been chosen to be 15 nm-' (corresponding to scattering through a maximum 
angle of 9 mad). 

Our first example is that of normal incidence on a single graphite slab of thickness 
100 A (figure 1). The effects of anisotropy are clearly seen in the differences between 
the energy-loss spectra for the ?-orientation (solid line) and the two equivalent ,?- and 9- 
orientations (dotted line). The interpretation of these spectra is aided by plotting the bulk 
and surface contributions separately (figure 2). 

In general agreement with previous work [2. 171, the bulk contributions have significant 
features at 5.5 eV, 7 eV, 19 eV and below 28 eV (figure 2(a)). The 5.5 eV shoulder and 
the 7 eV peak are associated with z-plasmons (strictly speaking, combinations of collective 
and single-particle excitations of the rr-electrons). The 5.5 eV mode is excited only by 
momentum transfers parallel to the c-axis, while the I eV mode requires the momentum 
transfer to be perpendicular to the c-axis. The shoulder at 19 eV and the peaks below 28 eV 
are associated with coupled (U + Ir)-plasmons. These modes are excited by momentum 
transfers that are, respectively, parallel and perpendicular to the c-axis. It follows from the 
geometry of the scattering process that the i-orientation should strongly suppress the 5.5 eV 
and 19 eV plasmons but moderately favour the 7 eV and 28 eV plasmons. Figure 2(a) 
agrees with this prediction. 

The surface contributions, shown in figure 2(b), are dominated by surface plasmons 
around 6 eV and 18 eV. The low-energy surface plasmon modes are broader and stronger 
for the ?-orientation than for the other orientations. This offsets the narrowness of the low- 
energy bulk mode in the i-orientation and explains why the low-energy peak in figure 1 
has a similar width for all orientations of the c-axis. The surface mode at 18 eV is not 
very sensitive to the direction of the c-axis and is evident in all the energy-loss spectra of 
figure 1. The &and &orientations produce slightly greater energy loss in this region because 
the 18 eV surface mode merges with the 19 eV bulk mode that exists for these orientations. 
The 18 eV surface plasmon is broad enough to modify the shape of the loss spectrum above 
20 eV; the peaks are shifted to lower energies than in the bulk spectrum because the surface 
contribution decreases with increasing energy. Finally, note that the weak structure in the 
spectrum between 9 eV and 13 eV is largely due to surface contributions. but these losses 
are best described as background because analysis of the dispersion relation [Clo] = 0 
shows that there are no self-sustaining surface plasmon modes in this range. 

Our next example is that of parallel incidence near a graphite-vacuum interface. Figure 
3(a) shows dl(ho)/dx, the scattering probability per unit energy range per unit path length 
for an electron travelling in the graphite region, 15 A away from the interface. The usual 
bulk modes can be identified at 5.5 eV, 7 eV, 19 eV and 27.5 eV. In the ,?-orientation, 



2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 

electron energy-loss (ev) 
Figure 3. Sculering probability per urit energy range per unit path length. dl(ho)/dx,  for an 
electron. travelling p d l e l  to. and 15 A away from lhe interface lxlwem semi-infinite graphite 
and vacuum regions: (a) electron in graphite; (h)  electron in vacuum. 
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2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 

electron energy-loss (ev) 
Figure 4. Sanering probability per unit energy range per unit path length, dl(ho)/dx. for a~ 
electron travelling a! the surface between semi-infinite vacuum and graphite repiam. 

the c-axis is parallel to the beam, so the 5.5 eV and 19 eV modes are strongly suppressed 
and the 7 eV and 27.5 eV modes moderately enhanced in this orientation. With the beam 
in this position (i.e. inside the graphite region) the surface contributions are much smaller 
than those due to the bulk, but a detailed analysis shows that they increase the effects of 
anisotropy for the 27.5 eV mode and a decrease them for the 5-7 eV modes. 

Very different results are obtained when the beam is outside the graphite region. Figure 
3(b) shows dl(fio)/dr for an electron travelling in the vacuum region, 15 8, away from the 
interface. This spectrum is dominated by surface effects so there are no features at 28 eV. 
There are significant effects due to anisotropy in the surface modes. In comparison with 
the %orientation, the i- and 9-orientations produce broader modes around 18-20 eV and 
slightly narrower modes around 5-7 eV. Figure 3 shows the energy-loss spectrum when the 
beam is at the interface. This is quite similar to figure 3(b), but the 18-20 eV modes are 
now comparatively more pronounced, particularly in the case of the .?-orientation. 

Our final example considers a thin graphite slab of thickness 30 A, sandwiched between 
semi-infinite vacuum and diamond regions. Figure 5(a) shows the energy-loss spectrum 
calculated for an electron in the middle of the graphite slab. The main features of this 
spectrum are similar to those of figure 3(a). When the electron beam is moved to the 
graphite-diamond interface, the spectrum alters considerably (figure 5(b)). The modes 
between 28 eV and 30 eV can be interpreted as a combination of bulk graphite and bulk 
diamond modes. The peaks at 14 eV and 22 eV coincide with minor features in the spectrum 
for bulk diamond, but they also include significant contributions from the graphite-diamond 
interface. Separate analysis of the interface contribution reveals considerable anisotropy 
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Figwre 5. Scattering prababilily per unit energy range per unit palh length d l ( f i o ) / d x ,  for an 
electron travelling parallel to h e  interfaces of a diamondlgraphitdvacuum sandwich structure: 
(U) electron in middle of graphite regian; (b) electron at diamond-graphite interface. 
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around 22 eV, with the ?-orientation producing more scattering than the other orientations, 
leading to an enhanced 22 eV peak in the ?-orientation of figure 5(b). Between 26 eV and 
36 eV the interface contributions favour the i- and j-orientations. 

5. Conclusions 

This paper has developed the programme of paper I and paper II by extending the classical 
dielectric theory of electron energy loss to multilayered anisotropic slabs. We have derived 
closed-form expressions for the dispersion relation and the energy-loss spectrum for both 
normal and parallel incidence and for any orientation of the anisotropy axes. The close 
similarity between these results and our previous findings in papers I and n supports OUT 

general belief that dispersion brackets are the natural way of expressing the solutions to 
multilayer problems. 

Calculations on graphite have shown that anisotropic effects are important for both bulk 
and surface plasmons. In future, we hope to extend these calculations to include the effects 
of retardation. The retarded calculation is likely to be much more complicated than the 
classical theory presented here because it combines the difficulties of a dielectric tensor 
with a 4 x 4 transfer matrix. Nevertheless, we hope that progress will be possible in the 
near future. 
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